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Introduction
Periodontal fibroblasts, osteoblasts, and cement oblasts 
are principle cells in periodontal regeneration. Stem cells 
are a renewable source for these cells. Cell-adhesion, 
migration, proliferation, and differentiation are the 

various steps involved in periodontal regeneration.1 The
ultimate goal of periodontal therapy is to regenerate the 

lost periodontal tissue caused by periodontitis.2

Different clinical trials have demonstrated that grafting 
procedures for the regeneration in intrabony defects are 
achievable, but complete and predictable reconstruction 

of periodontal tissue is still difficult to obtain.3 The cause
of this is that damaged periodontium has a limited 

capacity for regeneration.4 Tissue 
engineering/regenerative medicine targets the 
regeneration of tissue and organs either by implanting 
biomaterials in the form of grafts for in vivo regeneration 
or by constructing substitutes enriched with cells and 
growth factors in vitro and transferring them into the 

defect site for regeneration.5 Tissue engineering is an

interdisciplinary branch involving stem cell biology, 
material sciences, medicine, chemistry, and biomaterial 

manufacturing.6 Emerging studies have proven that
nanoscale topography and nano-geometry-based 
scaffolds have a positive influence on cell differentiation 

and behavior, leading to enhanced regeneration.7, 8 A
recent study by Van Dyke et al. showed that proresolving 
nanomedicines designed specifically for the treatment of 
inflammation-induced bone loss resulted in increased 

bone formation in a large animal model.9 Ongoing
research into the importance of nanoscale features for 
regeneration of periodontal complex tissue will further 
elucidate the required scaffold design parameters and 
therapeutic capabilities of nanotechnology-based 
applications. A wide range of materials, such as 
autografts, allografts, and xenografts, are used alone or in 
combination with platelet rich fibrin, growth factors, and 
bone morphogenic proteins which have been tried with 

limited success and predictability.10-17 All tissues
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originate from stem cells. A stem cell is defined as a cell 
that has the ability to retain the capacity to divide and 
produce progeny cells that differentiate (develop) into 
various cells or tissues, including periodontium. 
Strategies are being developed to incorporate these stem 

cells into scaffolds for regeneration.18-23 There is a need 
for effective strategies for implementation of tissue 
engineering into day-to-day practice. These strategies 
may be a hurdle with regulatory agencies, as they 
represent tissues, biological products, and drugs 
requiring evaluation to be done in all of the applicable 

pathways.6 The USFDA has approved 28 tissue-
engineering products for clinical use, and they are 

commercially available for various applications.24 

3D Printing 
The term 3D printing describes a manufacturing 
approach that builds objects layer by layer. This 
manufacturing procedure is described as additive 

manufacturing or as rapid prototyping.25 Powder or 
liquid resins are used for 3D printing in a layer-by-layer 
manner. To construct each layer, 3D printers use 3D 
CAD software that measures thousands of cross-sections 
for a precise output. The 3D machine dispenses a thin 
layer of liquid resin and uses a computer-controlled 
ultraviolet laser to harden each layer in the specified 
cross-section pattern. After the construct is fabricated, 

excess resin is removed using a chemical bath.26 Resins, 
super alloys, plastics, titanium, polymers, nickel-based 
and cobalt chromium, stainless steel, ceramic composite 
materials, and polycaprolactone are some of the 
materials used in 3D printing. 

Direct 3D Printing 
Various cells, extracellular matrix, and bioactive 
molecule deposition can be done with fine-tuned control 
with this method. Living cell peptides, proteins, and 

DNA plasmids have been printed for various purposes.27 
3D scaffolds with extra cellular matrix and cells have 

been printed by direct 3D printing technology.28 

Indirect 3D Printing 
Indirect printing involves the printing of a mold that is 
then cast with the final polymer. The scaffold for gene 
therapy and a growth factor delivery system are casted 
with this method. A computed tomography scan of the 
patient’s defect acts as a template for making the 3D 

mold. Park et al. 29, 30 designed a 3D wax mold for 
periodontal regeneration to produce a fiber-guiding 
scaffold to improve integration of PDL fibers into bone 
and cementum. Alveolar ridge architecture can be 
maintained by placing an indirect 3D-printed scaffold in 
post-extraction sockets, resulting in normal bone healing 
and better maintenance of the alveolar ridge compared 

with extraction sockets without scaffolds.31 

Fused Deposition Modelling 

The fused deposition modeling technique for 3D 
printing uses a thermoplastic material, such as 
Polycaprolactone and poly lactic-co-glycolic acid 
(PLGA). These scaffolds have mechanical strength, high 
porosity, and controlled morphology. Cell and 
biomolecule incorporation may not be possible as this 

technique requires high temperatures for fabrication.27 

Hydrogel Scaffolds 
Soft tissue scaffolds can also be fabricated using 
hydrogels. Cell incorporation can be done into these 

hydrogel scaffolds.27 Cell-to-cell interactions are 
restricted in these scaffolds, which can influence cell-to-
cell signaling that may be detrimental in regeneration. 

3D Printing with Live Cells 
Living cells, either in cell aggregates or seeded onto 3D-
printed scaffolds, may enhance cell signaling and 
promote tissue formation. The scaffold-free approach is 
defined as layer-by-layer additive biomanufacturing 

using live cells.32 Spheroids of cells are used as building 
blocks that fuse to form a tissue in the minitissue-based 
approach. Blood supply to newly formed tissue can also 
be provided using vascular spheroids which assemble 

together to form vascular channels.33 Recent research 
has focused on using 3D printing in building complex 
tissues, such as constructing periodontium-like 

tissue.34and patient-specific constructs such as 

temporomandibular joints.27 

Emerging Concepts of Tissue Engineering in 
Periodontology 
Advanced biomedical imaging such as cone beam 
computed tomography used for pathology visualization, 
implant placement, and to visualize the topography of 
bone has paved the way for better diagnosis and 
treatment planning in periodontology. CBCT imaging 
provides a scope for developing personalized scaffolds. 
High resolution three-dimensional imaging of bony 
topography obtained by CBCT allows the development 
of image-based scaffolds which can fit precisely in defect 

morphologies around teeth.34 Polymeric or ceramic 
scaffolds can be developed using 3D printing, and three-
dimensional printing has been utilized to make surgical 
guides and some first-generation regenerative scaffolds 
for clinical use. These scaffolding technologies can be 
used in combination with either biologics or cell 
therapies to create “bioactive scaffolding systems” 

intended for tissue repair and regeneration.34 

Periodontal Scaffold Design and Fabrication with 
Additive Biomanufacturing 
Periodontium is a complex tissue in its shape and 
structure. Designing scaffolds which mimic the complex 
periodontal shape and organization represents a 
significant challenge in regenerative periodontology. 
Although additive biomanufacturing may help 
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surmount this hurdle, the adoption and long-term 
success of these strategies rely greatly on the biomaterials 
being used. Ceramics and polymers are the most 
commonly used materials for the preparation of 

scaffolds.35 These scaffolds can be synthetic or natural 
and can be resorbable or nonresorbable. Ceramic 
biomaterials simulating bone, such as CaP, calcium 
sulfates (CS), and bioactive glass (BG), are ideal 
candidates for hard-tissue engineering. They restore lost 
function with their stimulating effects on cell 
proliferation and differentiation and their relatively low 
degradation rate. Prolonged guided tissue remodeling 
and structural support for regeneration is achieved using 
these scaffolds. Brittleness and low ductility are concerns 
when using these materials. 
Synthetic polymers, on the other hand, such as polylactic 
acid (PLA), polyglycolic acid (PGA), copolymer poly 
(lactic-co-glycolic acid) (PLGA), and PCL termed 
PLURONICS have highly adjustable characteristics, 
excellent production repeatability, and can potentially be 
mass produced. However, the high temperature required 
for printing makes the incorporation of cells and growth 
factors into the polymer mixture complicated if not 

impossible.36 Laser-assisted printing, inkjet printing, 
and extrusion-based printing are various additive 
biomanufacturing techniques. Common to all these 
technologies is the use of CAD software or digital images 

for the design.37 
Extrusion-based printing can be done using a wide 
variety of printers, which vary in the temperature-
controlled material handling, dispensing system and 
stage, and an optional light source and piezoelectric 
humidifier. It is the most commonly used technique for 

fabricating additive periodontal scaffolds.38 “An example 
of an extrusion-based printing technique evaluated for 
periodontal applications is fused deposition modeling 
(FDM). In FDM systems a thermoplastic material is fed 
from a filament coil and inserted into a heated nozzle 
head that enables the deposition of semi-molten state 

polymer struts onto a substrate”.39 The electrospinning 
scaffold fabrication method is also explored for 
periodontal applications. A syringe pump, a syringe that 
discharges the desired polymer, a high voltage supply, 
and a collector plate are part of the electrospinning setup. 
Electrospinning is also referred to as solution 
electrospinning if done with polymer solutions and melt 
electrospinning if done with polymer melts. Since melt 
electrospinning allows direct writing of the polymer 
melt, this method can be considered as an additive (bio) 

manufacturing technique.40 

Multiphasic Scaffolding for Periodontal Regeneration 
Periodontal tissue with its complex anatomy requires 
hierarchical tissue formation. Adequate periodontal 
ligament fiber orientation and its incorporation into the 
newly formed tissue establish strength and integrity, 
which are also key in periodontal regeneration. A PCL–

PGA scaffold fabricated by computer-aided 
manufacturing addresses these problems. The scaffold 
consisted of both periodontal ligament-specific and 
bone-specific compartments. Indirect 3D printing was 
used to fabricate the hybrid scaffold. Pore size, channel 
orientation, and tissue specific compartments were 
carefully designed when preparing the mold. After 
fabrication, the molds were cast with a PCL or PGA 
polymer solution. To form a single scaffold structure, 
both compartments were fused with a thin layer of PCL. 
Biomimetic random hybrid scaffolds for engineering 
human tooth-ligament interfaces were evaluated in 
subcutaneous pockets of mice by Park et al. They 
demonstrated bone and periodontal ligament 
regeneration capacity and generation of parallel and 
obliquely oriented fibers. Adjustments were made to the 

design to further simulate periodontal tissues.41 This 
approach demonstrated control over fiber orientation 
and facilitated the morphogenesis of periodontal tissue. 
Park et al. further evaluated the controlled channel 
architecture in the scaffold design on the periodontal 

tissue interface.29 Compared with random scaffold 
architectures, in vivo evaluations of this scaffold in 
periodontal fenestration defects in athymic rats showed 
controlled and predictable periodontal fiber orientation, 
controlled tissue infiltration, and a better organization of 
the ligament interface. With this image-based, fiber-
guiding scaffolding system, the authors intend to 
predictably facilitate regeneration and integration of 

dental supporting tissues.30 

Cell Sheet Technology in Combination with Additive 
3D Printing 
Several groups of researchers have investigated the 
combination of additively manufactured scaffolds and 

cell sheet technology. Vaquette et al. 42 used a fused 
deposition-modeled component for the bone 
compartment and a more flexible solution electrospun 
component for the periodontal ligament compartments. 
It was a biphasic scaffold design for regeneration of 
alveolar bone and periodontal ligament simultaneously. 

Lee et al. 43 developed a triphasic scaffold as an extension 
of biphasic scaffolds. It aimed to integrate regeneration 
of various tissues. The scaffold was fabricated by using 
fused deposition modeling and consisted of 
compartments for the cementum/dentin interface, the 
periodontal ligament, and the alveolar bone. 
Regeneration of periodontal tissue was envisioned by a 
combination of biophysical properties and biological 
cues. Stiffness of the PCL scaffold impeded adaptability 
to the complex 3D anatomy of different periodontal 
defects and proved to be a limitation of this design. A 
case report of a personalized additively manufactured 
bioscaffold for periodontal osseous defect regeneration 
in humans was reported by Rasperini et al. Computed 
tomography scan of the patient’s defect was used, and a 
3D scaffold was prepared. PCL powder containing HA 
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was laser sintered to prepare this scaffold. Despite its 
promise, this scaffold became exposed after 12 months, 
which ultimately led to failure from a clinical point of 
view. Retrospectively analyzing this failure, a porous 
design for angiogenesis and a less bulky and easily 
absorbed scaffold might have provided better results as 

proven by various studies.44-46 

Conclusions 
3D imaging and modeling can have a huge impact on 
regenerative periodontics. Regenerative medicine and 
three-dimensional imaging allow more predictability in 
managing complex interdisciplinary clinical scenarios. 
These 3D scaffolding technologies can be used in 
combination with either biologics or cell therapies to 

create” bioactive scaffolding systems” for tissue repair.47 
A major hurdle in the usage of cell scaffolds in day-to-
day practice is the difficult task of getting clearance from 
regulatory agencies as it involves cells and tissues. 
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